Recent Upgrades to the Climatology-Calibrated Precipitation Analysis (CCPA)

Yan Luo^{1,3}, Dingchen Hou¹, Yuejian Zhu¹, Pingping Xie², and Ying Lin¹

¹ Environmental Modeling Center/NCEP/NWS/NOAA
 ² Climate Prediction Center/NCEP/NWS/NOAA
 ³ I. M. Systems Group, INC. at EMC/NCEP

Acknowledgements

Geoff DiMego, Jun Du, Julie Demargne, Shaorong Wu, and Youlong Xia

AMS 92nd Annual Meeting 26th Conference on Hydrology 22-26 January, 2012, New Orleans, LA

Background

What is CCPA?

- A dataset of precipitation analysis, over CONUS at 6h, ~5km resolution
- Statistically adjust Stage IV data at CPC analysis grid so their climatology is consistent with the CPC dataset, and then downscale back to the original Stage IV grid.
- Advantages:
 - Higher reliability of the CPC dataset, and
 - Higher spatial and temporal resolution of the Stage IV dataset
- Statistical adjustment Linear regression: $CPC = a \cdot ST4 + b$
- Products:
 - Operational in July 2010
 - Twice daily
 - Grids: HRAP (primary), and NDGD, 0.125, 0.5 and 1.0 degree resolutions (byproducts)
 - Period:2002~present
- Application: Precipitation forecast calibration and downscaling

CCPA upgrades

- Inclusion of 3 hourly CCPA analysis, in addition to 6 hourly CCPA
 - In need for regional short-range forecast calibration and verification
 - Implemented into operations in July 2011
 - See poster 408 by Luo et al.
- Update of regression coefficients with extended historical data sets from 2002 to 2011
 - Two more years of data added

Update of regression coefficients (a&b)

Establish Statistical Relationship:

1. Historical data sets

Operational: June 1 2002 to July 31 2009 For CPC and STAGE IV

Updated: June 1 2002 to July 31 2011 (two more years of data)

2. Match resolutions

- a. Accumulate RFC over 24 hours
- b. Interpolate to 1/8° (copygb w/ volume preservation)

3. Collect precipitation samples

- a. For each day of the year and at each grid point, collect all precip within 60 day window centered around that day, over all years (max ~ n x 61 data points)
- b. Use only data points with ST4 > 0

4. Linear regression

a. $CPC = a \cdot ST4 + b$

End Result

– Linear relationship (a & b) on $\frac{1}{8}$ ° grid for each day of the year

Oper (2002-2009)

Regression Aug. 1st

Update (2002-2011)

-0.5 -0.2 0

Regression Aug. 1st

Update (2002-2011)

-0.5 -0.2 0

Time series of regression

Comparison Wrt. CPC

Difference Wrt. CPC

Verification against RFC-gauge network

Summary

1. Updating regression coefficients

- Some slight improvements can be seen in term of RMSE, ABSE,
 CDF and CRPS.
- No negative impact and degrade were found when regression coefficients were updated and applied to generate new version of CCPA.
- Periodically (annually) upgrading regression coefficients with increasing sample size makes CCPA methodology robust.

2. Future work:

- Nonlinear Regression Models
- Neural Network Method